Effect of superoxide dismutase‑entrapped liposomes and protein transduction domain‑superoxide dismutase on human umbilical vein endothelial cells.
نویسندگان
چکیده
Superoxide dismutases (SOD) are able to remove the superoxide anion free radicals produced by environmental stress and thereby protect cells from being injured by reactive oxygen species. However, SOD is unable to transduce automatically across cell membranes. Protein transduction domains (PTDs) are peptides able to mediate protein delivery into cells and were first observed in the HIV‑1 Tat protein. In the present study, PTD (RKKRRQRRR) was fused to Dunaliella salina (Ds)MnSOD to form PTD‑DsMnSOD. This was inserted into pET32a to construct the recombinant plasmid pET32a‑PTD‑DsMnSOD and transduced into E. coli BL21(DE3) to obtain purified PTD‑DsMnSOD proteins. Liposome‑encapsulated proteins are also able to cross cell membranes. In this study, DsMnSOD proteins were purified and encapsulated by liposomes. The obtained MnSOD, PTD‑MnSOD and liposome MnSOD were used to protect human umbilical vein endothelial cells (HUVECs) from injury under oxygen pressure. A cell counting kit 8 was used to test the survival rate of HUVECs and results indicated that the protective effect of MnSOD was limited compared with that of PTD‑MnSOD and liposome MnSOD. Thus, PTD and liposomes exhibited improved effects when MnSOD was present in cells.
منابع مشابه
Exogenously-added copper/zinc superoxide dismutase rescues damage of endothelial cells from lethal irradiation
The vascular endothelium is important for the early and late effects observed in lethally irradiated tissue and organs. We examined the effects of exogenously added superoxide dismutase on cell survival and angiogenesis in lethally irradiated human primary umbilical vein endothelial cells. Cell survival was significantly improved in superoxide dismutase-treated cells; the addition of superoxide...
متن کاملHuman Erythrocyte Superoxide Dismutase Encapsulated in Positively Charged Liposomes
Superoxide dismutase (SOD) is an important antioxidant that protects many types of cells from the free radical damage. One of the possible ways for the use of SOD is its incorporation in liposomes. The aim of this study was to investigate the effect of cationic phospholipids on the entrapment of human erythrocyte superoxide dismutase (Cu/Zn SOD) in liposomes. Also, in the present study, w...
متن کاملResveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4).
Resveratrol, an important antioxidant found in grapes and wine, is likely to contribute to red wine's potential to prevent human cardiovascular disease. In addition to its known (direct) antioxidant effect, we have found that resveratrol also regulates the gene expression of pro-oxidative and anti-oxidative enzymes in human endothelial cells. NADPH oxidases (Nox) are the predominant producers o...
متن کاملBerberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling
Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS-) induced apoptosis in human umbilical vein endothelial cells (HUVECs) and the molecular mechanisms mediating the ef...
متن کاملPro-atherogenic effect of interleukin-4 in endothelial cells: modulation of oxidative stress, nitric oxide and monocyte chemoattractant protein-1 expression.
BACKGROUND Although considered as an anti-inflammatory cytokine, interleukin-4 (IL-4) has been shown to be pro-atherogenic in mice models of atherosclerosis. OBJECTIVES In order to elucidate this paradox, we have investigated the effects of IL-4 on characteristic atherogenic parameters in human umbilical vein endothelial cells (HUVECs): production of reactive oxygen species, expression of mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine reports
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2014